मराठी

If`( 2 Sin Theta + 3 Cos Theta) =2 , " Prove that " (3 Sin Theta - 2 Cos Theta) = +- 3.` - Mathematics

Advertisements
Advertisements

प्रश्न

If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`

उत्तर

Given ,`(2 sin theta + 3 cos theta ) = 2         .....(i)`

We have `( 2 sintheta + 3 cos theta )^2 + ( 3 sin theta - 2 cos theta )^2`

   =` 4 sin^2 theta + 9 cos^2 theta + 12 sin theta  cos theta + 9  sin^2 theta + 4 cos^2 theta - 12 sin theta cos theta`

  =`4 ( sin^2 theta + cos^2 theta ) + 9 ( sin^2 theta + cos^2 theta )`

  =`4+9`

  =13

i.e .,`( 2 sin theta + 3 cos theta ) ^2 + ( 3 sin theta -  2cos theta )^2 = 13`

  = > `2^2 + (3 sintheta - 2 cos theta )^2 = 13`

  = > `( 3 sin theta - 2 cos theta ) ^2 = 13-4`

  = > `( 3 sin theta - 2 cos theta ) ^2 = 9 `

  = > `( 3 sin theta - 2 cos theta ) = +- 3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 2

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 2 | Q 10

संबंधित प्रश्‍न

If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


sec4 A − sec2 A is equal to


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


Prove the following identity:

(sin2θ – 1)(tan2θ + 1) + 1 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×