Advertisements
Advertisements
प्रश्न
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
उत्तर
Given ,`(2 sin theta + 3 cos theta ) = 2 .....(i)`
We have `( 2 sintheta + 3 cos theta )^2 + ( 3 sin theta - 2 cos theta )^2`
=` 4 sin^2 theta + 9 cos^2 theta + 12 sin theta cos theta + 9 sin^2 theta + 4 cos^2 theta - 12 sin theta cos theta`
=`4 ( sin^2 theta + cos^2 theta ) + 9 ( sin^2 theta + cos^2 theta )`
=`4+9`
=13
i.e .,`( 2 sin theta + 3 cos theta ) ^2 + ( 3 sin theta - 2cos theta )^2 = 13`
= > `2^2 + (3 sintheta - 2 cos theta )^2 = 13`
= > `( 3 sin theta - 2 cos theta ) ^2 = 13-4`
= > `( 3 sin theta - 2 cos theta ) ^2 = 9 `
= > `( 3 sin theta - 2 cos theta ) = +- 3`
APPEARS IN
संबंधित प्रश्न
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
sec4 A − sec2 A is equal to
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0