मराठी

If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.

पर्याय

  • 1

  • `1/2`

  • 2

  • 3

MCQ
रिकाम्या जागा भरा

उत्तर

If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is 1.

Explanation:

Given,

sinA + sin2A = 1

⇒ sinA = 1 – sin2A = cos2A   ...[∵ sin2θ + cos2θ = 1]

On squaring both sides, we get

sin2A = cos4A

⇒ 1 – cos2A = cos4A

⇒ cos2A + cos4A = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 9 | पृष्ठ ९०

संबंधित प्रश्‍न

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


`sec theta (1- sin theta )( sec theta + tan theta )=1`


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


If cosθ = `5/13`, then find sinθ. 


If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×