Advertisements
Advertisements
प्रश्न
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
पर्याय
1
`1/2`
2
3
उत्तर
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is 1.
Explanation:
Given,
sinA + sin2A = 1
⇒ sinA = 1 – sin2A = cos2A ...[∵ sin2θ + cos2θ = 1]
On squaring both sides, we get
sin2A = cos4A
⇒ 1 – cos2A = cos4A
⇒ cos2A + cos4A = 1
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
If cosθ = `5/13`, then find sinθ.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`