Advertisements
Advertisements
प्रश्न
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.
पर्याय
0°
30°
60°
90°
उत्तर
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is 90°.
Explanation:
Given,
sinα = `1/2` = sin30° ...`[∵ sin 30^circ = 1/2]`
⇒ α = 30°
And cosβ = `1/2` = cos60° ...`[∵ 60^circ = 1/2]`
⇒ β = 60°
∴ α + β = 30° + 60° = 90°
APPEARS IN
संबंधित प्रश्न
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Find the value of x in each of the following :
cos x = cos 60º cos 30º + sin 60º sin 30º
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.
Proof: L.H.S. = sec θ + tan θ
= `1/square + square/square`
= `square/square` ......`(∵ sec θ = 1/square, tan θ = square/square)`
= `((1 + sin θ) square)/(cos θ square)` ......[Multiplying `square` with the numerator and denominator]
= `(1^2 - square)/(cos θ square)`
= `square/(cos θ square)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is ______.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.