Advertisements
Advertisements
प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.
उत्तर
Given, sin θ = cos θ
`sinθ/cosθ` = 1
tan θ = 45°
`\implies` θ = 45°
So tan2 θ + cot2 θ – 2 = tan2 45° + cot2 45° – 2
= 1 + 1 – 2
= 0
∴ tan2 θ + cot2 θ – 2 = 0
APPEARS IN
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If 3 cot θ = 2, find the value of `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
In ΔBC, right angled at C, if tan A = `8/7`, then the value of cot B is ______.