Advertisements
Advertisements
рдкреНрд░рд╢реНрди
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
рдЙрддреНрддрд░
consider a right-angled Δle ABC, we get
Let x be the adjacent side.
By applying Pythagoras theorem
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
`(sqrt10)^2 = 1^2 + x^2`
x2 = 10 − 1 = 9
x = 3
`sin theta = 1/cosec theta = 1/sqrt10`
`cos theta = "adjacent"/"hypotenuse" = 3/sqrt10`
`tan theta = "opposite sides"/"adjacebt side" = 1/3`
`sec theta = 1/cos theta = sqrt10/3`
`cot theta = 1/tan theta = (1/1)/3 = 3`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Evaluate the following
`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
If cos A = `4/5`, then the value of tan A is ______.
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.