Advertisements
Advertisements
प्रश्न
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
उत्तर
Let OQ = x and OA = y
Given that, BQ = q, SA = P and AB = SQ = Length of ladder
Also, ∠BAO = α and ∠QSO = β
Now, In ΔBAO,
cos α = `"OA"/"AB"`
⇒ cos α = `y/"AB"`
⇒ y = AB cos α = OA ...(i)
And sin α = `"OB"/"AB"`
⇒ OB = BA sin α ...(ii)
Now, In ΔQSO
cos β = `"OS"/"SQ"`
⇒ OS = SQ cos β = AB cos β ...[∵ AB = SQ] ...(iii)
And sin β = `"OQ"/"SQ"`
⇒ OQ = SQ sin β = AB sin β ...[∵ AB = SQ] ...(iv)
Now, SA = OS – AO
P = AB cos β – AB cos α
⇒ P = AB(cos β – cos α) ...(v)
And BQ = BO – QO
⇒ q = BA sin α – AB sin β
⇒ q = AB(sin α – sin β) ...(vi)
Equation (v) divided by Equation (vii), we get
`"p"/"q" = ("AB"(cos β - cos α))/("AB"(sin α - sin β)) = (cos β - cos α)/(sin α - sin β)`
⇒ `"p"/"q" = (cos β - cos α)/(sin α - sin β)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
Prove the following:
If tan A = `3/4`, then sinA cosA = `12/25`
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.