Advertisements
Advertisements
प्रश्न
Prove the following:
If tan A = `3/4`, then sinA cosA = `12/25`
उत्तर
Given, tan A = `3/4 = "P"/"B" = "Perpendicular"/"Base"`
Let P = 3k and B = 4k
By Pythagoras theorem,
H2 = P2 + B2
= (3k)2 + (4k)2
= 9k2 + 16k2
= 25k2
⇒ H = 5k ...[Since, side cannot be negative]
∴ sin A = `"P"/"H" = (3"k")/(5"k") = 3/5`
And cos A = `"B"/"H" = (4"k")/(5"k") = 4/5`
Now, sin A cos A = `3/5 * 4/5 = 12/25`
Hence proved.
APPEARS IN
संबंधित प्रश्न
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
If cos (40° + A) = sin 30°, then value of A is ______.
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is ______.
(3 sin2 30° – 4 cos2 60°) is equal to ______.