Advertisements
Advertisements
प्रश्न
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
उत्तर
L.H.S = (sin α + cos α)(tan α + cot α)
= `(sin alpha + cos alpha)(sin alpha/cos alpha + cos alpha/sin alpha)` ...`[∵ tan theta = sin theta/costheta "and" cot theta = cos theta/sin theta]`
= `(sin alpha + cos alpha)((sin^2alpha + cos^2alpha)/(sin alpha * cos alpha))`
= `(sin alpha + cos alpha) * 1/((sin alpha * cos alpha))` ...[∵ sin2θ + cos2θ = 1]
= `1/cosalpha + 1/sinalpha` ...`[∵ sec theta = 1/costheta "and" "cosec" theta = 1/sintheta]`
= sec α + cosec α
= R.H.S
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
9 sec2 A − 9 tan2 A is equal to
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1