मराठी

`(Sin Theta+1-cos Theta)/(Cos Theta-1+Sin Theta) = (1+ Sin Theta)/(Cos Theta)` - Mathematics

Advertisements
Advertisements

प्रश्न

`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`

उत्तर

LHS= `(sin theta+1cos theta)/(cos theta-1+sin theta) `

      =`((sin theta+1-cos theta)(sin theta+cos theta+1))/((cos theta -1 + sin theta)(sin theta + cos theta +1))`

      =`((sin theta + 1 )^2 - cos^2 theta)/((sin theta + cos theta )^2 -1^2)`

       =`(sin^2 theta +1+2 sin theta - cos^2 theta)/(sin^2 + cos^2 theta+2 sin theta  cos theta -1)`

      =`(sin^2 theta + sin^2 theta + cos^2 theta +2sin theta - cos^2 theta)/(2 sin theta   cos theta)`

      =`(2 sin ^2 theta + 2 sin theta)/(2 sin theta cos theta)`

      =`(2 sin theta (1+ sin theta))/(2 sin theta cos theta)`

      =`(1+sin theta)/cos theta`

      = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 27.2

संबंधित प्रश्‍न

If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.


`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


If `sec theta = x ,"write the value of tan"  theta`.


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


Prove the following identity :

`cosA/(1 + sinA) = secA - tanA`


Find the value of ( sin2 33° + sin2 57°).


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


If sin A = `1/2`, then the value of sec A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×