Advertisements
Advertisements
प्रश्न
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
पर्याय
tan2θ
1
cot2θ
0
उत्तर
1
Explanation;
Hint:
sin2θ + `1/(1 + tan^2 theta) = sin^2 theta + 1/(sec^2 theta)`
= sin2θ + cos2θ
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.