Advertisements
Advertisements
Question
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Options
tan2θ
1
cot2θ
0
Solution
1
Explanation;
Hint:
sin2θ + `1/(1 + tan^2 theta) = sin^2 theta + 1/(sec^2 theta)`
= sin2θ + cos2θ
= 1
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
sin2θ + sin2(90 – θ) = ?