Advertisements
Advertisements
Question
9 sec2 A − 9 tan2 A = ______.
Options
1
9
8
0
Solution
9 sec2 A − 9 tan2 A = 9.
Explanation:
9 sec2A − 9 tan2A
= 9 (sec2A − tan2A)
= 9 (1) ...[As sec2 A − tan2 A = 1]
= 9
Hence, alternative 9 is correct.
APPEARS IN
RELATED QUESTIONS
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Write the value of tan10° tan 20° tan 70° tan 80° .
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
What is the value of (1 − cos2 θ) cosec2 θ?
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
cos4 A − sin4 A is equal to ______.
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
Eliminate θ if x = r cosθ and y = r sinθ.