English

Eliminate θ if x = r cosθ and y = r sinθ. - Geometry Mathematics 2

Advertisements
Advertisements

Question

Eliminate θ if x = r cosθ and y = r sinθ.

Sum

Solution

x = r cosθ and y = r sinθ

Squaring on both terms,

x2 = r2cos2θ ...(1)

y2 = r2sin2θ ...(2)

Add (1) + (2).

x2 + y2 = r2sin2θ + r2cos2θ

x2 + y2 = r2(sin2θ + cos2θ)

But we know, (sin2θ + cos2θ) = 1

∴ x2 + y2 = r2

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Official

RELATED QUESTIONS

If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


`(sec^2 theta-1) cot ^2 theta=1`


`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


Simplify : 2 sin30 + 3 tan45.


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×