English

Sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below. Activity: L.H.S = □ = (sin2A + cos2A) (□) = 1(□) .....[sin2A+□=1] = □ – cos2A .....[sin2A = 1 – cos2A] = □ = R.H.S - Geometry Mathematics 2

Advertisements
Advertisements

Question

sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S

Fill in the Blanks
Sum

Solution

L.H.S = sin4A – cos4A 

= (sin2A)2 – (cos2A)2

 = (sin2A + cos2A) (sin2A – cos2A)    .....[∵ a2 – b2 = (a + b)(a – b)]

= 1(sin2A – cos2A)       .....[∵ sin2A + cos2A = 1]

= sin2A – cos2A

= 1 – cos2A – cos2A    .....[sin2A = 1 – cos2A]

= 1 – 2cos2A

= R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.3 (A)

RELATED QUESTIONS

if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


If cos θ = `24/25`, then sin θ = ?


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×