Advertisements
Advertisements
Question
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Solution
L.H.S = sin4A – cos4A
= (sin2A)2 – (cos2A)2
= (sin2A + cos2A) (sin2A – cos2A) .....[∵ a2 – b2 = (a + b)(a – b)]
= 1(sin2A – cos2A) .....[∵ sin2A + cos2A = 1]
= sin2A – cos2A
= 1 – cos2A – cos2A .....[sin2A = 1 – cos2A]
= 1 – 2cos2A
= R.H.S
APPEARS IN
RELATED QUESTIONS
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If cos θ = `24/25`, then sin θ = ?
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`