English

Choose the correct alternative: sin θ = 12, then θ = ? - Geometry Mathematics 2

Advertisements
Advertisements

Question

Choose the correct alternative:

sin θ = `1/2`, then θ = ?

Options

  • 30°

  • 45°

  • 60°

  • 90°

MCQ

Solution

30°

sin θ = `1/2`

∴ θ = 30°      ...[sin 30° = `1/2`]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.1 (A)

RELATED QUESTIONS

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


`sec theta (1- sin theta )( sec theta + tan theta )=1`


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ. 


9 sec2 A − 9 tan2 A is equal to


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


Choose the correct alternative:

tan (90 – θ) = ?


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×