Advertisements
Advertisements
Question
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Options
30°
45°
60°
90°
Solution
30°
sin θ = `1/2`
∴ θ = 30° ...[sin 30° = `1/2`]
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Choose the correct alternative:
tan (90 – θ) = ?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α