English

`Sqrt((1+Cos Theta)/(1-cos Theta)) + Sqrt((1-cos Theta )/(1+ Cos Theta )9) = 2 Cosec Theta` - Mathematics

Advertisements
Advertisements

Question

`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 

Solution

LHS=`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta ))`

    =`sqrt(((1+cos theta)^2)/((1-cos theta)(1+ cos theta))) + sqrt (((1-cos theta)^2)/((1+ cos theta) (1- cos theta))`

    =`sqrt(((1+cos theta)^2)/((1-cos^2 theta))) + sqrt(((1-cos theta )^2)/((1-cos^2 theta))`

    =` sqrt(((1+ cos theta)^2)/(sin^2 theta))+sqrt(((1-cos theta
)^2)/sin^2 theta)`

     =`((1+cos theta))/(sin theta) + ((1-cos theta))/(sin theta)`

      =`(1+ cos theta +1-cos theta)/sin theta`

     =`2/sin theta`

    = 2cos ecθ
   = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 21.3

RELATED QUESTIONS

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


Evaluate:

`(tan 65^circ)/(cot 25^circ)`


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


Choose the correct alternative:

1 + cot2θ = ? 


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×