Advertisements
Advertisements
Question
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
Solution
LHS=`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta ))`
=`sqrt(((1+cos theta)^2)/((1-cos theta)(1+ cos theta))) + sqrt (((1-cos theta)^2)/((1+ cos theta) (1- cos theta))`
=`sqrt(((1+cos theta)^2)/((1-cos^2 theta))) + sqrt(((1-cos theta )^2)/((1-cos^2 theta))`
=` sqrt(((1+ cos theta)^2)/(sin^2 theta))+sqrt(((1-cos theta
)^2)/sin^2 theta)`
=`((1+cos theta))/(sin theta) + ((1-cos theta))/(sin theta)`
=`(1+ cos theta +1-cos theta)/sin theta`
=`2/sin theta`
= 2cos ecθ
= RHS
APPEARS IN
RELATED QUESTIONS
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Choose the correct alternative:
1 + cot2θ = ?
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`