Advertisements
Advertisements
Question
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Solution
LHS = `cos^4A - sin^4A`
= `(cos^2A - sin^2A)(cos^2A + sin^2A)`
= `{cos^2A - (1 - cos^2A)} = 2cos^2A - 1` = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.