Advertisements
Advertisements
Question
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Solution
`sec^4A - sec^2A = 1/cos^4A - 1/cos^2A`
= `(1 - cos^2A)/cos^4A`
= `sin^2A/cos^4A` [∵ `sin^2A = 1 - cos^2A`]
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Choose the correct alternative:
cot θ . tan θ = ?
Prove that sec2θ − cos2θ = tan2θ + sin2θ
If cosA + cos2A = 1, then sin2A + sin4A = 1.
sec θ when expressed in term of cot θ, is equal to ______.