English

`Cosec Theta (1+Costheta)(Cosectheta - Cot Theta )=1` - Mathematics

Advertisements
Advertisements

Question

`cosec theta (1+costheta)(cosectheta - cot theta )=1`

Solution

LHS = `cosec theta (1+ cos theta )( cosec theta - cot theta)`

       =` (cosec  theta + cosec  theta xx cos theta)(cosec  theta - cot theta)`

    =` (cosec  theta + 1/(sin theta) xx cos theta ) ( cosec  theta - cot theta )`

    =` ( cosec  theta + cot  theta )( cosec  theta - cot  theta)`

    =` cosec^2 theta - cot^2  theta       (∵ cosec^2 theta - cot^2 theta=1)`

     = 1 

     = RHS 

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 4.2

RELATED QUESTIONS

Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Choose the correct alternative:

1 + tan2 θ = ?


Find A if tan 2A = cot (A-24°).


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


If 2sin2β − cos2β = 2, then β is ______.


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


(1 – cos2 A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×