Advertisements
Advertisements
Question
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
Solution
LHS = `cosec theta (1+ cos theta )( cosec theta - cot theta)`
=` (cosec theta + cosec theta xx cos theta)(cosec theta - cot theta)`
=` (cosec theta + 1/(sin theta) xx cos theta ) ( cosec theta - cot theta )`
=` ( cosec theta + cot theta )( cosec theta - cot theta)`
=` cosec^2 theta - cot^2 theta (∵ cosec^2 theta - cot^2 theta=1)`
= 1
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Choose the correct alternative:
1 + tan2 θ = ?
Find A if tan 2A = cot (A-24°).
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If 2sin2β − cos2β = 2, then β is ______.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?
(1 – cos2 A) is equal to ______.