Advertisements
Advertisements
Question
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Solution
L.H.S = (1 – cos2A) . sec2B + tan2B(1 – sin2A)
= `sin^2"A"* 1/(cos^2"B") + (sin^2"B")/(cos^2"B") (1 - sin^2"A")` ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
= `(sin^2"A")/(cos^2"B") + (sin^2"B")/(cos^2"B") - (sin^2"A"sin^2"B")/(cos^2"B")`
= `(sin^2"A")/(cos^2"B") - (sin^2"A"sin^2"B")/(cos^2"B") + (sin^2"B")/(cos^2"B")`
= `(sin^2"A")/(cos^2"B") (1 - sin^2"B") + tan^2"B"`
= `(sin^2"A")/(cos^2"B") (cos^2"B") + tan^2"B"`
= sin2A + tan2B
= R.H.S
∴ (1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B
APPEARS IN
RELATED QUESTIONS
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.