Advertisements
Advertisements
Question
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Solution
L.H.S = `(sin theta)/(1 - cot theta) + (cos theta)/(1- tan theta)`
`= (sin theta)/(1 - cos theta/sin theta) + cos theta/(1 - sin theta/cos theta)`
`= sin^2 theta/(sin theta - cos theta) + cos^2 theta/(cos theta - sin theta)`
`= (sin^2 theta)/(sin theta - cos theta) - cos^2 theta/(sin theta - costheta)`
`= (sin^2 theta - cos^2 theta)/(sin theta - cos theta)`
`= ((sin theta - cos theta)(sin theta + cos theta))/(sin theta - cos theta)`
`= sin theta + cos theta`
= R.H.S
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.