Advertisements
Advertisements
Question
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Solution
Given ,`(2 sin theta + 3 cos theta ) = 2 .....(i)`
We have `( 2 sintheta + 3 cos theta )^2 + ( 3 sin theta - 2 cos theta )^2`
=` 4 sin^2 theta + 9 cos^2 theta + 12 sin theta cos theta + 9 sin^2 theta + 4 cos^2 theta - 12 sin theta cos theta`
=`4 ( sin^2 theta + cos^2 theta ) + 9 ( sin^2 theta + cos^2 theta )`
=`4+9`
=13
i.e .,`( 2 sin theta + 3 cos theta ) ^2 + ( 3 sin theta - 2cos theta )^2 = 13`
= > `2^2 + (3 sintheta - 2 cos theta )^2 = 13`
= > `( 3 sin theta - 2 cos theta ) ^2 = 13-4`
= > `( 3 sin theta - 2 cos theta ) ^2 = 9 `
= > `( 3 sin theta - 2 cos theta ) = +- 3`
APPEARS IN
RELATED QUESTIONS
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
cos4 A − sin4 A is equal to ______.
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
If cosA + cos2A = 1, then sin2A + sin4A = 1.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.