English

If`( 2 Sin Theta + 3 Cos Theta) =2 , " Prove that " (3 Sin Theta - 2 Cos Theta) = +- 3.` - Mathematics

Advertisements
Advertisements

Question

If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`

Solution

Given ,`(2 sin theta + 3 cos theta ) = 2         .....(i)`

We have `( 2 sintheta + 3 cos theta )^2 + ( 3 sin theta - 2 cos theta )^2`

   =` 4 sin^2 theta + 9 cos^2 theta + 12 sin theta  cos theta + 9  sin^2 theta + 4 cos^2 theta - 12 sin theta cos theta`

  =`4 ( sin^2 theta + cos^2 theta ) + 9 ( sin^2 theta + cos^2 theta )`

  =`4+9`

  =13

i.e .,`( 2 sin theta + 3 cos theta ) ^2 + ( 3 sin theta -  2cos theta )^2 = 13`

  = > `2^2 + (3 sintheta - 2 cos theta )^2 = 13`

  = > `( 3 sin theta - 2 cos theta ) ^2 = 13-4`

  = > `( 3 sin theta - 2 cos theta ) ^2 = 9 `

  = > `( 3 sin theta - 2 cos theta ) = +- 3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 2

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 2 | Q 10

RELATED QUESTIONS

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.


As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


Write the value of sin A cos (90° − A) + cos A sin (90° − A).


If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ. 


cos4 A − sin4 A is equal to ______.


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


If cosA + cos2A = 1, then sin2A + sin4A = 1.


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×