English

If sinθ = 1161, then find the value of cosθ using the trigonometric identity. - Geometry Mathematics 2

Advertisements
Advertisements

Question

If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.

Sum

Solution

Given: sinθ = `11/61`

We know that,

sin2θ + cos2θ = 1

∴ `(11/61)^2 + cos^2θ` = 1

∴ `121/3721 + cos^2θ` = 1

∴ cos2θ = `1 - 121/3721`

∴ cos2θ = `(3721 - 121)/3721`

∴ cos2θ = `3600/3721`

∴ cosθ = `60/61`  .......[Taking square root of both sides]

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (March) Set 1

APPEARS IN

RELATED QUESTIONS

(secA + tanA) (1 − sinA) = ______.


Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


(sec θ + tan θ) . (sec θ – tan θ) = ?


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


The value of tan A + sin A = M and tan A - sin A = N.

The value of `("M"^2 - "N"^2) /("MN")^0.5`


Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


If tan θ = `x/y`, then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×