Advertisements
Advertisements
Question
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
Solution
Given: sinθ = `11/61`
We know that,
sin2θ + cos2θ = 1
∴ `(11/61)^2 + cos^2θ` = 1
∴ `121/3721 + cos^2θ` = 1
∴ cos2θ = `1 - 121/3721`
∴ cos2θ = `(3721 - 121)/3721`
∴ cos2θ = `3600/3721`
∴ cosθ = `60/61` .......[Taking square root of both sides]
APPEARS IN
RELATED QUESTIONS
(secA + tanA) (1 − sinA) = ______.
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
(sec θ + tan θ) . (sec θ – tan θ) = ?
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
If tan θ = `x/y`, then cos θ is equal to ______.