English

If Cosec θ = 2x and 5 ( X 2 − 1 X 2 ) 2 ( X 2 − 1 X 2 ) - Mathematics

Advertisements
Advertisements

Question

If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 

Sum

Solution

Given: 

`cosecθ=2x, cot θ2/x` 

We know that, 

`cosec^2 θ-cot^2 θ=1`

⇒` (2x)^2-(2/x)^2=1` 

⇒` 4x^2-4/x^2=1` 

⇒ `4(x^2-1/x^2)=1` 

⇒`2xx2xx(x^2-1/x^2)=1` 

⇒ `2(x^2-1/x^2)=1/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 23 | Page 55

RELATED QUESTIONS

Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`


If `sec theta + tan theta = p,` prove that

(i)`sec theta = 1/2 ( p+1/p)   (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


Find the value of sin 30° + cos 60°.


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


If cosA + cos2A = 1, then sin2A + sin4A = 1.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×