Advertisements
Advertisements
Question
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Solution
L.H.S. = sin2 θ + cos4 θ
= 1 - cos2 θ + cos4 θ
= 1 - cos2 θ (1 - cos2 θ)
= 1 - (1 - sin2 θ) sin2 θ
= 1 - sin2 θ + sin4 θ
= cos2 θ + sin4 θ
= R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Define an identity.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Choose the correct alternative:
cos θ. sec θ = ?
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0