English

Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0

Sum

Solution

sin6A + cos6A = (sin2A)3 + (cos2A)3

 = (1 – cos2A)3 + (cos2A)3   ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`

= 1 – 3 cos2A + 3(cos2A)2 – (cos2A)3 + cos6A   ......[∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]

= 1 – 3 cos2A(1 – cos2A) – cos6A + cos6A

= 1 – 3 cos2A sin2A

sin4A + cos4A = (sin2A)2 + (cos2A)2

= (1 – cos2A)2 + (cos2A)2

= 1 – 2 cos2A + (cos2A)2 + (cos2A)2   ......[∵ (a – b)2 = a2 – 2ab + b2]

= 1 – 2 cos2A + 2 cos4A

= 1 – 2 cos2A(1 – cos2A)

= 1 – 2 cos2A sin2A

L.H.S = 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1

= 2(1 – 3 cos2A sin2A) – 3(1 – 2 cos2A sin2A) + 1

= 2 – 6 cos2A sin2A – 3 + 6 cos2A sin2A + 1

= 0

= R.H.S

∴ 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.4
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×