Advertisements
Advertisements
Question
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
Solution
sin6A + cos6A = (sin2A)3 + (cos2A)3
= (1 – cos2A)3 + (cos2A)3 ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
= 1 – 3 cos2A + 3(cos2A)2 – (cos2A)3 + cos6A ......[∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]
= 1 – 3 cos2A(1 – cos2A) – cos6A + cos6A
= 1 – 3 cos2A sin2A
sin4A + cos4A = (sin2A)2 + (cos2A)2
= (1 – cos2A)2 + (cos2A)2
= 1 – 2 cos2A + (cos2A)2 + (cos2A)2 ......[∵ (a – b)2 = a2 – 2ab + b2]
= 1 – 2 cos2A + 2 cos4A
= 1 – 2 cos2A(1 – cos2A)
= 1 – 2 cos2A sin2A
L.H.S = 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1
= 2(1 – 3 cos2A sin2A) – 3(1 – 2 cos2A sin2A) + 1
= 2 – 6 cos2A sin2A – 3 + 6 cos2A sin2A + 1
= 0
= R.H.S
∴ 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
APPEARS IN
RELATED QUESTIONS
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
(1 – cos2 A) is equal to ______.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`