Advertisements
Advertisements
Question
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Solution
LHS = `(1 + tan^2θ)sinθcosθ`
= `(1 + sin^2θ/cos^2θ)sinθcosθ`
= `((cos^2θ + sin^2θ)/cos^2θ)sinθcosθ`
= `1/cos^2θ xx sinθcosθ` (∵ `cos^2θ + sin2θ = 1`)
= `sinθ/cosθ = tanθ`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
If 2sin2β − cos2β = 2, then β is ______.