Advertisements
Advertisements
Question
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Solution
LHS = `(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ)`
= `((1 + sinθ)(cosecθ + cotθ) - (1 - sinθ)(cosecθ - cotθ))/(cosec^2θ - cot^2θ)`
= `(cosecθ + cotθ + 1 + cosθ - cosecθ + cotθ + 1 - cosθ)/(1 + cot^2θ - cot^2θ)` (∵ `cosec^2θ = 1 + cot^2θ`)
= 2 + 2cotθ = 2(1 + cotθ)
Notes
θ
APPEARS IN
RELATED QUESTIONS
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
(i)` (1-cos^2 theta )cosec^2theta = 1`
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1