English

Prove the Following Identity : 1 + Sin θ Cos E C θ − Cot θ − 1 − Sin θ Cos E C θ + Cot θ = 2 ( 1 + Cot θ ) - Mathematics

Advertisements
Advertisements

Question

Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`

Sum

Solution

LHS = `(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ)`

= `((1 + sinθ)(cosecθ + cotθ) - (1 - sinθ)(cosecθ - cotθ))/(cosec^2θ - cot^2θ)`

= `(cosecθ + cotθ + 1 + cosθ - cosecθ + cotθ + 1 - cosθ)/(1 + cot^2θ - cot^2θ)`    (∵ `cosec^2θ = 1 + cot^2θ`)

 = 2 + 2cotθ = 2(1 + cotθ)

shaalaa.com

Notes

θ

  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.1 | Q 6.04
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×