Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
उत्तर
LHS = `(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ)`
= `((1 + sinθ)(cosecθ + cotθ) - (1 - sinθ)(cosecθ - cotθ))/(cosec^2θ - cot^2θ)`
= `(cosecθ + cotθ + 1 + cosθ - cosecθ + cotθ + 1 - cosθ)/(1 + cot^2θ - cot^2θ)` (∵ `cosec^2θ = 1 + cot^2θ`)
= 2 + 2cotθ = 2(1 + cotθ)
Notes
θ
APPEARS IN
संबंधित प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
What is the value of (1 + cot2 θ) sin2 θ?
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Eliminate θ if x = r cosθ and y = r sinθ.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ