Advertisements
Advertisements
प्रश्न
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
विकल्प
ab
a2 − b2
a2 + b2
a2 b2
उत्तर
Given:
`x= a secθ, y=b tanθ`
So,
`b^2x^2-a^2 y^2`
=` b^2(a secθ)^2-a^2(btan θ)^2`
= `b^2 a^2 sec^2 θ-a^2 b^2 tan^2θ`
=` b^2 a^2 (sec^2θ-tan^2 θ)`
We know that,`
`sec^2θ-tan^2θ=1`
Therfore,
`b^2x^2-a^2y^2=a^2b^2`
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
If sec θ = `25/7`, then find the value of tan θ.
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
(sec θ + tan θ) . (sec θ – tan θ) = ?
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`