हिंदी

If X = a Sec θ and Y = B Tan θ, Then B2x2 − A2y2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =

विकल्प

  •  ab

  • a2 − b2

  •  a2 + b2

  • a2 b2

MCQ

उत्तर

Given:

`x= a secθ, y=b tanθ`

So,

`b^2x^2-a^2 y^2` 

=` b^2(a secθ)^2-a^2(btan θ)^2` 

= `b^2 a^2 sec^2 θ-a^2 b^2 tan^2θ`

=` b^2 a^2 (sec^2θ-tan^2 θ)`

We know that,`

`sec^2θ-tan^2θ=1`

Therfore, 

`b^2x^2-a^2y^2=a^2b^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 13 | पृष्ठ ५७

संबंधित प्रश्न

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


If sec θ = `25/7`, then find the value of tan θ.


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


(sec θ + tan θ) . (sec θ – tan θ) = ?


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×