हिंदी

Prove the Following Trigonometric Identities (1 + Cot2 A) Sin2 A = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1

उत्तर

We know that `cosec^A - cot^2 A = 1`

So,

`(1 + cot^2 A)sin^2 A = cosec^2 A sin^2A`

`= (cosec A sin A)^2`

`= (1/sin A xx sin A)^2`

`= (1)^2`

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 2 | पृष्ठ ४३

संबंधित प्रश्न

Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove that:

2 sin2 A + cos4 A = 1 + sin4


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


Statement 1: sin2θ + cos2θ = 1

Statement 2: cosec2θ + cot2θ = 1

Which of the following is valid?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×