Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
उत्तर
We know that `cosec^A - cot^2 A = 1`
So,
`(1 + cot^2 A)sin^2 A = cosec^2 A sin^2A`
`= (cosec A sin A)^2`
`= (1/sin A xx sin A)^2`
`= (1)^2`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?