Advertisements
Advertisements
प्रश्न
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
उत्तर
L.H.S. = 2 sin2 A + cos4 A
= 2 sin2 A + (1 – sin2 A)2
= 2 sin2 A + 1 + sin4 A – 2 sin2 A
= 1 + sin4 A = R.H.S.
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If sec θ + tan θ = x, then sec θ =
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`