Advertisements
Advertisements
प्रश्न
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
उत्तर
L.H.S. = 2 sin2 A + cos4 A
= 2 sin2 A + (1 – sin2 A)2
= 2 sin2 A + 1 + sin4 A – 2 sin2 A
= 1 + sin4 A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =