Advertisements
Advertisements
प्रश्न
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
उत्तर
L.H.S. = `(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB)`
= `((sinA - sinB)(sinA + sinB) + (cosA - cosB)(cosA + cosB))/((cosA + cosB)(sinA + sinB)`
= `(sin^2A - sin^2B + cos^2A - cos^2B)/((cosA + cosB)(sinA + sinB))`
= `((sin^2A + cos^2A) - (sin^2B + cos^2B))/((cosA + cosB)(sinA + sinB))` ...[∵ cos2 A + sin2 A = 1]
= `(1 - 1)/((cosA + cosB)(sinA + sinB))`
= 0 = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
If cos θ = `24/25`, then sin θ = ?
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ