Advertisements
Advertisements
प्रश्न
`sin^2 theta + 1/((1+tan^2 theta))=1`
उत्तर
LHS= `sin^2 theta + 1/((1+ tan^2 theta))`
=` sin^2 theta + 1/(sec^2 theta) (∵ sec^2 theta - tan^2 theta =1 )`
= `sin^2 theta + cos^2 theta`
= 1
=RHS
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
If `sec theta = x ,"write the value of tan" theta`.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Find the value of ( sin2 33° + sin2 57°).
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
If sin A = `1/2`, then the value of sec A is ______.