Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
उत्तर
cosec A – cot A
= `1/sinA - cosA/sinA`
= `(1 - cosA)/sinA`
= `(1 - cosA)/sinA xx (1 + cosA)/(1 + cosA)`
= `(1 - cos^2A)/(sinA(1 + cosA)`
= `sin^2A/(sinA(1 + cosA))`
= `sinA/(1 + cosA)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
`(sec^2 theta-1) cot ^2 theta=1`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ