Advertisements
Advertisements
प्रश्न
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
उत्तर
L.H.S. = `(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2`
= `(sinA/cosA + 1/cosA)^2 + (sinA/cosA - 1/cosA)^2`
= `((sinA + 1)/cosA)^2 + ((sinA - 1)/cosA)^2`
= `(sinA + 1)^2/(cos^2A) + (sinA - 1)^2/(cos^2A)`
= `((sinA + 1)^2 + (sinA - 1)^2)/(cos^2A)`
= `(sin^2A + 1 + 2sinA + sin^2A + 1 - 2sinA)/cos^2A`
= `(2sin^2A + 2)/(cos^2A)`
= `(2(1 + sin^2A))/(1 - sin^2A)`
= `2((1 + sin^2A)/(1 - sin^2A))` = R.H.S.
APPEARS IN
संबंधित प्रश्न
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that cot2θ × sec2θ = cot2θ + 1
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1