Advertisements
Advertisements
प्रश्न
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
पर्याय
m2 − n2
m2n2
n2 − m2
m2 + n2
उत्तर
Given:
`a cosθ+b sinθ= m,`
`a sinθ-b cos θ=n`
Squaring and adding these equations, we have
`(a cos θ+bsin θ)^2+(a sinθ-b cosθ)^2=(m)^2+(n)^2`
`⇒ (a^2 cos^2θ+b^2sin^2θ+2.a cosθ.bsinθ)+(a^2 sin^2θ+b^2 cos^2θ-2.a sin θ.bcosθ)=m^2+n^2`
`⇒ a^2 cos^2θ+b^2 sin^2θ+2ab sin θ cosθ+a^2 sin^2θ+b^2 cos^2θ-2ab sinθ cos θ=m^2+n^2`
`⇒a^2 cos^2θ+b^2 sin^2θ+a^2 sin^2θ+b^2 cos^2=m^2+n^2`
`⇒(a^2 cos^2θ+a^2 sin^2 θ)+(b^2 sin^2θ+b^2 cos^2θ)=m^2+n^2`
`⇒a^2 (cos^2θ+sin^2θ)+b^2(sin^2 θ+cos^2θ)=m^2+n^2`
`⇒ a^2(1)+b^2(1)=m^2+n^2`
`⇒ a^2+b^2=m^2+n^2`
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Choose the correct alternative:
cos θ. sec θ = ?
sin2θ + sin2(90 – θ) = ?
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.