हिंदी

If a Cos θ + B Sin θ = M and a Sin θ − B Cos θ = N, Then A2 + B2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =

विकल्प

  • m2 − n2

  • m2n2

  •  n2 − m2

  • m2 + n2

MCQ

उत्तर

Given: 

`a cosθ+b sinθ= m,` 

`a sinθ-b cos θ=n` 

Squaring and adding these equations, we have

`(a cos θ+bsin θ)^2+(a sinθ-b cosθ)^2=(m)^2+(n)^2`

`⇒ (a^2 cos^2θ+b^2sin^2θ+2.a cosθ.bsinθ)+(a^2 sin^2θ+b^2 cos^2θ-2.a sin θ.bcosθ)=m^2+n^2`

`⇒ a^2 cos^2θ+b^2 sin^2θ+2ab sin θ cosθ+a^2 sin^2θ+b^2 cos^2θ-2ab sinθ cos θ=m^2+n^2`

`⇒a^2 cos^2θ+b^2 sin^2θ+a^2 sin^2θ+b^2 cos^2=m^2+n^2` 

`⇒(a^2 cos^2θ+a^2 sin^2 θ)+(b^2 sin^2θ+b^2 cos^2θ)=m^2+n^2`

`⇒a^2 (cos^2θ+sin^2θ)+b^2(sin^2 θ+cos^2θ)=m^2+n^2`

`⇒ a^2(1)+b^2(1)=m^2+n^2`

`⇒ a^2+b^2=m^2+n^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 21 | पृष्ठ ५८

संबंधित प्रश्न

Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Choose the correct alternative:

1 + tan2 θ = ?


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


(sec θ + tan θ) . (sec θ – tan θ) = ?


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


sec θ when expressed in term of cot θ, is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×