Advertisements
Advertisements
प्रश्न
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
विकल्प
m2 − n2
m2n2
n2 − m2
m2 + n2
उत्तर
Given:
`a cosθ+b sinθ= m,`
`a sinθ-b cos θ=n`
Squaring and adding these equations, we have
`(a cos θ+bsin θ)^2+(a sinθ-b cosθ)^2=(m)^2+(n)^2`
`⇒ (a^2 cos^2θ+b^2sin^2θ+2.a cosθ.bsinθ)+(a^2 sin^2θ+b^2 cos^2θ-2.a sin θ.bcosθ)=m^2+n^2`
`⇒ a^2 cos^2θ+b^2 sin^2θ+2ab sin θ cosθ+a^2 sin^2θ+b^2 cos^2θ-2ab sinθ cos θ=m^2+n^2`
`⇒a^2 cos^2θ+b^2 sin^2θ+a^2 sin^2θ+b^2 cos^2=m^2+n^2`
`⇒(a^2 cos^2θ+a^2 sin^2 θ)+(b^2 sin^2θ+b^2 cos^2θ)=m^2+n^2`
`⇒a^2 (cos^2θ+sin^2θ)+b^2(sin^2 θ+cos^2θ)=m^2+n^2`
`⇒ a^2(1)+b^2(1)=m^2+n^2`
`⇒ a^2+b^2=m^2+n^2`
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Choose the correct alternative:
1 + tan2 θ = ?
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
(sec θ + tan θ) . (sec θ – tan θ) = ?
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
sec θ when expressed in term of cot θ, is equal to ______.