Advertisements
Advertisements
प्रश्न
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
उत्तर
`cos38^circ sec(90^circ - 2A) = 1`
⇒ `cos38^circcosec2A = 1`
⇒ `cos38^circ (1/(sin2A)) = 1`
⇒ `sin2A = cos(90 - 52^circ)`
⇒ `sin2A = sin52^circ`
⇒ `2A = 52^circ`
⇒ `A = 26^circ`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`