Advertisements
Advertisements
प्रश्न
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
उत्तर
`cos38^circ sec(90^circ - 2A) = 1`
⇒ `cos38^circcosec2A = 1`
⇒ `cos38^circ (1/(sin2A)) = 1`
⇒ `sin2A = cos(90 - 52^circ)`
⇒ `sin2A = sin52^circ`
⇒ `2A = 52^circ`
⇒ `A = 26^circ`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Choose the correct alternative:
cos 45° = ?
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ