Advertisements
Advertisements
प्रश्न
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
उत्तर
We have , `(sin theta + cos theta ) = sqrt(2) cos theta`
Dividing both sides by sin θ , We get
`(sin theta)/ (sin theta )+ (cos theta)/ (sin theta)= (sqrt(2) cos theta)/ (sin theta)`
⇒ `1+ cot theta = sqrt(2) cot theta`
⇒ `sqrt(2) cot theta - cot theta =1`
⇒ `( sqrt(2) - 1 ) cot theta =1`
`⇒ cot theta = 1/ (( sqrt(2)-1))`
`⇒ cot theta = 1/((sqrt(2)-1))xx ((sqrt(2)+1))/((sqrt(2)+1))`
`⇒ cot theta = ((sqrt(2)+1))/(2-1)`
`⇒ cot theta = ((sqrt(2)+1))/1`
∴`cot theta = (sqrt (2) +1)`
APPEARS IN
संबंधित प्रश्न
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Write the value of tan10° tan 20° tan 70° tan 80° .
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Choose the correct alternative:
Which is not correct formula?
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`