Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
उत्तर
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying both numerator and the denominator by `(1 + sin theta)` we have
`cos theta/(1- sin theta) = (cos theta(1 + sin theta))/((1 - sin theta)(1 + sin theta))`
`= (cos theta(1 + sin theta))/(1 - sin^2 theta)`
`= (cos theta(1 + sin theta))/cos^2 theta`
`= (1 + sin theta)/cos theta`
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If x = a tan θ and y = b sec θ then
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
sin(45° + θ) – cos(45° – θ) is equal to ______.