मराठी

Prove the Following Trigonometric Identities. If Cos a + Cos2 A = 1, Prove that Sin2 A + Sin4 A = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1

उत्तर

Given : `cos A + cos^2 A = 1`

we have to prove `sin^2 A + sin^4 A = 1`

Now

`cos A + cos^2 A = 1`

`=>cos A = 1 - cos^2 A`

`=> cos A = sin^2 A`

`=> sin^2 A = cos A`

Therefore, we have

`sin^2 A + sin^4 A = cos A + (cos A)^2`

`= cos A + cos^`2 A`

= 1

Hence proved.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 82 | पृष्ठ ४७

संबंधित प्रश्‍न

`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


(i)` (1-cos^2 theta )cosec^2theta = 1`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ. 


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


If cosθ = `5/13`, then find sinθ. 


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×