Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
उत्तर
Given : `cos A + cos^2 A = 1`
we have to prove `sin^2 A + sin^4 A = 1`
Now
`cos A + cos^2 A = 1`
`=>cos A = 1 - cos^2 A`
`=> cos A = sin^2 A`
`=> sin^2 A = cos A`
Therefore, we have
`sin^2 A + sin^4 A = cos A + (cos A)^2`
`= cos A + cos^`2 A`
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
(i)` (1-cos^2 theta )cosec^2theta = 1`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
If cosθ = `5/13`, then find sinθ.
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.