Advertisements
Advertisements
प्रश्न
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
उत्तर
L.H.S. = tan2Φ + cot2Φ + 2
= tan2Φ + 1 + cot2Φ + 1
= sec2Φ + cosec2Φ
= `1/cos^2 Φ + 1/sin^2Φ`
= `(sin^2 Φ + cos^2 Φ)/(sin^2 Φ.cos^2Φ )`
= `1/(sin^2 Φ. cos^2 Φ )`
= cosec2Φ. sec2Φ
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ