Advertisements
Advertisements
प्रश्न
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
उत्तर
We have `(cot theta + tan theta ) = m and ( sec theta - cos theta )=n`
Now, `m^2 n = [(cot theta + tan theta )^2 (sec theta - cos theta )]`
=`[(1/tan theta + tan theta )^2 (1/cos theta- cos theta )]`
=`(1+tan^2 theta)^2/tan^2 theta xx ((1-cos^2 theta))/costheta`
=`sec^4 theta/tan^2 theta xx sin^2 theta/ cos theta`
=`sec ^4 theta /(sin^2 theta/cos^2 theta) xx sin^2 theta / cos theta`
=`(cos^2 xxsec^4 theta)/costheta`
=`cos theta sec^4 theta`
=`1/ sec theta xx sec ^4 theta = sec^3 theta`
∴`(m^2 n)^(2/3) =(sec^3 theta )^(2/3) = sec^2 theta`
Again , `mn^2 = [(cot theta + tan theta )( sec theta - cos theta )^2 ]`
=`[(1/tan theta + tan theta).(1/ cos theta - cos theta)^2]`
=`((1+ tan^2 theta))/tan theta xx ((1- cos^2 theta)^2)/cos^2 theta `
=`sec^2 theta/tan theta xx sin^4 theta/cos^2 theta`
=`sec^2 theta/(sintheta/costheta) xx sin^4 theta/ cos^2 theta`
=`(sec^2 xx sin^3 theta)/cos theta`
=`1/ cos^2 theta xx sec^3 theta/ cos theta = tan^3 theta `
∴ `(mn^2)^(2/3) = (tan ^3 theta )^(2/3) = tan^2 theta`
Now ,` (m^2n)^(2/3) - (mn^2)^(2/3)`
=`sec^2 theta - tan^2 theta =1 `
=RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Find the value of ( sin2 33° + sin2 57°).
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Choose the correct alternative:
tan (90 – θ) = ?
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
Given that sin θ = `a/b`, then cos θ is equal to ______.