मराठी

If `(Cot Theta ) = M and ( Sec Theta - Cos Theta) = N " Prove that " (M^2 N)(2/3) - (Mn^2)(2/3)=1` - Mathematics

Advertisements
Advertisements

प्रश्न

If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`

उत्तर

We have `(cot theta + tan theta ) = m and ( sec theta - cos theta )=n`

Now, `m^2 n = [(cot theta + tan theta )^2 (sec theta -  cos theta )]`

                  =`[(1/tan theta + tan theta )^2 (1/cos theta- cos theta )]`

                  =`(1+tan^2 theta)^2/tan^2 theta xx ((1-cos^2 theta))/costheta`

                  =`sec^4 theta/tan^2 theta xx sin^2 theta/ cos theta`

                  =`sec ^4 theta /(sin^2 theta/cos^2 theta) xx sin^2 theta / cos theta`

                  =`(cos^2 xxsec^4 theta)/costheta`

                  =`cos theta sec^4 theta`

                 =`1/ sec theta xx sec ^4 theta = sec^3 theta`

∴`(m^2 n)^(2/3) =(sec^3 theta )^(2/3) =  sec^2 theta`

Again , `mn^2 = [(cot theta + tan theta )( sec theta - cos theta )^2 ]`

                      =`[(1/tan theta + tan theta).(1/ cos theta - cos theta)^2]`

                     =`((1+ tan^2 theta))/tan theta xx ((1- cos^2 theta)^2)/cos^2 theta `

                     =`sec^2 theta/tan theta xx sin^4 theta/cos^2 theta`

                    =`sec^2 theta/(sintheta/costheta) xx sin^4 theta/ cos^2 theta`

                    =`(sec^2 xx sin^3 theta)/cos theta`

                     =`1/ cos^2 theta xx sec^3 theta/ cos theta = tan^3 theta `

∴ `(mn^2)^(2/3) = (tan ^3 theta )^(2/3) = tan^2 theta`

Now ,` (m^2n)^(2/3) - (mn^2)^(2/3)`

                   =`sec^2 theta - tan^2 theta =1 `

                   =RHS

Hence proved.

 

           

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 2

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 2 | Q 8

संबंधित प्रश्‍न

 Evaluate sin25° cos65° + cos25° sin65°


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


Find the value of ( sin2 33° + sin2 57°).


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


Choose the correct alternative:

tan (90 – θ) = ?


The value of tan A + sin A = M and tan A - sin A = N.

The value of `("M"^2 - "N"^2) /("MN")^0.5`


Given that sin θ = `a/b`, then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×