मराठी

Given that sin θ = ab, then cos θ is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Given that sin θ = `a/b`, then cos θ is equal to ______.

पर्याय

  • `b/sqrt(b^2 - a^2)`

  • `b/a`

  • `sqrt(b^2 - a^2)/b`

  • `a/sqrt(b^2 - a^2)`

MCQ
रिकाम्या जागा भरा

उत्तर

Given that sin θ = `a/b`, then cos θ is equal to `underlinebb(sqrt(b^2 - a^2)/b)`.

Explanation:

According to the question,

sin θ = `a/b`

We know,

sin2θ + cos2θ = 1

sin2A = 1 – cos2A

sin A = `sqrt(1 - cos^2A)`

So, cos θ = `sqrt(1 - a^2/b^2)`

= `sqrt((b^2 - a^2)/b^2)`

= `sqrt(b^2 - a^2)/b`

Hence, cos θ = `sqrt(b^2 - a^2)/b`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 4 | पृष्ठ ९०

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`


If `secθ = 25/7 ` then find tanθ.


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`


Find the value of ( sin2 33° + sin2 57°).


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×