Advertisements
Advertisements
प्रश्न
Given that sin θ = `a/b`, then cos θ is equal to ______.
पर्याय
`b/sqrt(b^2 - a^2)`
`b/a`
`sqrt(b^2 - a^2)/b`
`a/sqrt(b^2 - a^2)`
उत्तर
Given that sin θ = `a/b`, then cos θ is equal to `underlinebb(sqrt(b^2 - a^2)/b)`.
Explanation:
According to the question,
sin θ = `a/b`
We know,
sin2θ + cos2θ = 1
sin2A = 1 – cos2A
sin A = `sqrt(1 - cos^2A)`
So, cos θ = `sqrt(1 - a^2/b^2)`
= `sqrt((b^2 - a^2)/b^2)`
= `sqrt(b^2 - a^2)/b`
Hence, cos θ = `sqrt(b^2 - a^2)/b`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If `secθ = 25/7 ` then find tanθ.
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Find the value of ( sin2 33° + sin2 57°).
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ