Advertisements
Advertisements
प्रश्न
Given that sin θ = `a/b`, then cos θ is equal to ______.
विकल्प
`b/sqrt(b^2 - a^2)`
`b/a`
`sqrt(b^2 - a^2)/b`
`a/sqrt(b^2 - a^2)`
उत्तर
Given that sin θ = `a/b`, then cos θ is equal to `underlinebb(sqrt(b^2 - a^2)/b)`.
Explanation:
According to the question,
sin θ = `a/b`
We know,
sin2θ + cos2θ = 1
sin2A = 1 – cos2A
sin A = `sqrt(1 - cos^2A)`
So, cos θ = `sqrt(1 - a^2/b^2)`
= `sqrt((b^2 - a^2)/b^2)`
= `sqrt(b^2 - a^2)/b`
Hence, cos θ = `sqrt(b^2 - a^2)/b`
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Write the value of tan1° tan 2° ........ tan 89° .
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove that:
tan (55° + x) = cot (35° – x)
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.