हिंदी

If sec θ = 4140, then find values of sin θ, cot θ, cosec θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ

योग

उत्तर

sec θ = `41/40`     ......[Given]

∴ cos θ = `1/sectheta = 1/(41/40)`

∴ cos θ = `40/41`

We know that,

sin2θ + cos2θ = 1

∴ `sin^2theta + (40/41)^2` = 1

∴ `sin^2theta + 1600/1681` = 1

∴ sin2θ = `1 - 1600/1681`

∴ sin2θ = `(1681- 1600)/1681`

∴ sin2θ = `81/1681`

∴ sin θ = `9/41`   .......[Taking square root of both sides]

Now, cosec θ = `1/sintheta`

= `1/((9/41))`

= `41/9`

cot θ = `costheta/sintheta`

= `((40/41))/((9/41))`

= `40/9`

∴ sin θ = `9/41`, cot θ = `40/9`, cosec θ = `41/9`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (B)

संबंधित प्रश्न

Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×