Advertisements
Advertisements
प्रश्न
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
उत्तर
sec θ = `41/40` ......[Given]
∴ cos θ = `1/sectheta = 1/(41/40)`
∴ cos θ = `40/41`
We know that,
sin2θ + cos2θ = 1
∴ `sin^2theta + (40/41)^2` = 1
∴ `sin^2theta + 1600/1681` = 1
∴ sin2θ = `1 - 1600/1681`
∴ sin2θ = `(1681- 1600)/1681`
∴ sin2θ = `81/1681`
∴ sin θ = `9/41` .......[Taking square root of both sides]
Now, cosec θ = `1/sintheta`
= `1/((9/41))`
= `41/9`
cot θ = `costheta/sintheta`
= `((40/41))/((9/41))`
= `40/9`
∴ sin θ = `9/41`, cot θ = `40/9`, cosec θ = `41/9`
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A