Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
उत्तर
We have to prove `(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
We know that, `sin^2 theta + cos^2 theta = 1`
`(1 + sec theta)/sec theta = (1 + 1/cos theta)/(1/cos theta)`
`= ((cos theta + 1)/cos theta)/(1/cos theta)`
`= (1 + cos theta)/1`
Multiplying the numerator and denominator by `(1 - cos theta)` we have
`(1 + sec theta)/sec theta = ((1 + cos theta)(1 - cos theta))/(1- cos theta)`
`= (1 - cos^2 theta)/(1- cos theta)`
`= sin^2 theta/(1 - cos theta)`
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Choose the correct alternative:
sec2θ – tan2θ =?
If 1 – cos2θ = `1/4`, then θ = ?
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?